

Observations on Human Performance in Air Traffic Control Operations:
Preliminaries to a Cognitive Model

Roger W. Remington
Seung Man Lee*

Ujwala Ravinder*
Michael Matessa

NASA Ames Research Center
*San Jose State University Foundation

MS 262-4 Moffett Field, CA 94035
650-604-6243, 650-604-4654, 650-604-6603, 650-604-6291

{rremington, smlee, uravinder, mmatessa}@mail.arc.nasa.gov

Keywords:
Air traffic control, human performance modeling, CPM-GOMS.

ABSTRACT: We have previously described a computational approach to modeling human performance, built using
the Apex architecture [1],in which extended behavioral sequences are automatically constructed from simpler CPM-
GOMS templates [2]. Here we report on efforts to extend that method to the more complex domain of air traffic control
operations. We describe the overall approach and our initial analysis of patterns of human performance observed in a
simulation of air traffic control operations conducted by the Federal Aviation Administration. Of particular interest
are patterns that characterize how operators manage multiple tasks, and distribute their attention over items. We
show how templates in our compositional approach might be structured to accommodate these patterns.

1. Introduction

Despite advances in automation, the human operator
retains a pivotal role in challenging domains, such as air
traffic control or air combat operations. The human
operator brings a flexibility, adaptability, and
resourcefulness unmatched by current automation.
Unfortunately, human performance limitations are often
a constraint on system performance, as well as a source
of error. For example, the speaking rate of air traffic
controllers can be the primary factor limiting throughput
at peak periods for several hub airports, and memory
failures have been implicated in airline accidents.
Therefore, overall system performance must be
considered with respect to human performance
characteristics.

When designing new systems, or modifying existing
systems, it would be useful then to be able to anticipate
the response of the user before committing large
resources in development. Our current methods for this
have limitations. Even extended empirical user testing
can fail to uncover serious difficulties. Such limitations
have contributed to the interest in computational
representations of the user that would allow the
designer to simulate user responses to a variety of
situations and design options. Though a complete

model of the user is beyond current capability, several
computational modeling approaches have been
successful in making accurate predictions of user
choices as well as task completion times [3-7]. Of the
several architectures available to model human users,
the Goals, Operators, Methods, and Selection (GOMS)
method [3] has been the most widely used. A variant of
GOMS, called CPM-GOMS has been shown to provide
accurate, often zero-parameter, predictions of the
routine performance of skilled users in procedural tasks
[8].

In CPM-GOMS, as in the standard GOMS, a task is
recursively decomposed from an initial Go al state into a
nested set of subgoals. The user is assumed to have
Methods that apply sequences of Operators that
transition between subgoals to achieve the Goal.
Selection rules are applied when there is more than one
method to achieve a goal. In a standard GOMS analysis
this task decomposition terminates in task-level
primitives of any desired granularity. For example, a leaf
node operator of a GOMS model of an air traffic
controller might be to issue a clearance. In contrast,
CPM-GOMS continues the decomposition, terminating
in operators at the level of elementary human mental
processes: Cognition, Perception, and Motor (hence
“CPM”). One advantage of this is that leaf nodes at the

CPM level are constant across situations. Thus, it may
be possible to achieve some domain generality by
modeling at this level. Another advantage, which
contributes significantly to the accuracy of prediction,
is that this level of representation allows one to
represent the parallelism that characterizes skilled
behavior. In a standard GOMS representation, for
example, performance times are computed by summing
together individual leaf-node operator times. In CPM-
GOMS, by contrast, Cognitive, Perceptual, and Motor
processors can execute in parallel, which enables
overlapping of the subcomponents of successive tasks.

1.1 Automating CPM-GOMS Modeling in Apex

A serious drawback to CPM-GOMS is the difficulty of
constructing models at this level of detail. We have
discussed this problem at length elsewhere and
described success in automating the process using the
Apex computational architecture [1, 2, 9]. Briefly, the
implementation in Apex automates the sequencing of
behavioral templates. Templates are psychological
models of elementary behaviors in the task domain. For
example, we have built templates for moving and
clicking a mouse, for speaking, for typing, and other
common behaviors. Each template consists of a
sequence of Cognitive, Perceptual, and Motor
operators that describe the putative internal operations
required to perform the action. Operators in template are
capable of executing in parallel subject to constraints.
We have described elsewhere [9] how resource, logical,
and slack-exclusion constraints are applied to determine
the schedule of operations within a template.

By describing elementary behaviors common across
task domains templates form an important bridge
between the task domain and the underlying human
performance architecture. Because templates represent
activities common to many interfaces it should be
possible to construct libraries of templates that can be
applied in different circumstances. Because templates
describe task-level activities it should be possible to
model behavior without a deep understanding of
cognitive psychology. That is, the psychology is
embedded in the templates, and the description in the
templates is sufficient for Apex, or other architectures
to automatically interweave templates to form extended
behavioral sequences. Indeed, the approach of
composing behavior from template-level building blocks
allows the modeler to use existing methods that analyze
tasks by hierarchical decomposition, with templates as
the leaf node operators.

1.2 Modeling Air Traffic Control

We have shown that this compositional approach can

predict performance on routine, well-practiced tasks
such as withdrawing a fixed amount of money from an
automated teller machine, typing and mousing to
interact with a computer-aided-design application, and
in simple text editing. These are the domains in which
CPM-GOMS has proven successful in past. In these
tasks, users are highly practiced, and data is usually
taken between 50 - 100 trials. At this level of practice
the tasks are highly perceptual-motor in character and
show the power of the CPM-GOMS method for
capturing the peak performance of users.

The automation of CPM-GOMS in Apex for the first
time allows us to address performance in more complex
domains. We use complex loosely to describe a domain,
such as air traffic control, where events are only quasi-
predictable, people must juggle multiple tasks, and
interruptions are present. Prior to the automation of
CPM-GOMS it would have been far too labor intensive
and error prone to begin to address domains such as air
traffic control.

1.3 Extension to Complex Domains

A CPM-GOMS template provides a simplified
characterization of human performance in terms of a
schedule of limited resources. This fits well with Apex,
which models an agent making decisions about how to
allocate limited resources. A key question as we extend
the approach to complex domains is whether we can
retain the simplicity of this level of description, or
whether it will be necessary to introduce more
complicated architectural mechanisms to deal with
knowledge and semantics. Behavior in domains such as
air traffic control is characterized as a mixture of
performance levels: skill, procedural, and knowledge.
Because the description at the level of resources
provides insight into issues such as workload and
throughput, we wish to retain this essential character of
CPM-GOMS. To extend the template approach it is
necessary to identify those portions of the behavioral
stream that contain routine behavior, and construct
templates to model performance.

We have recently made progress on two major issues
with respect to this extension. First, we have modified
the Apex computational architecture to interact with
external simulations. The advantage of this is that it
allows us to leverage existing domain simulations, and
provides an outlet for Apex models in the engineering
community. Second, we have constructed templates for
handoff operations based on task analyses. We have
recently received data from simulations both of air
traffic control and of shuttle cockpit operations. These
data provide detail on external events, operator
communications, operator actions, and operator eye

fixations at 60 Hz resolution. Below we describe how
Apex interacts with external simulations, and describe
our existing handoff model and compare it to data from
the simulation. We also some features of the data that
suggest ways in which to extend the template approach.

2. Integrating Apex with an External
Simulation

Our air traffic control modeling supports the Virtual
Airspace Modeling and Simulation (VAMS) project, a
joint NASA and FAA effort. VAMS is developing the
modeling and simulation infrastructure that would allow
the effect of proposed changes to airspace operations
to be evaluated early in the concept phase. The
principal criteria for the evaluation are capacity
(throughput) and safety. VAMS has developed a new
airspace simulation system, ACES. ACES is a
distributed agent-based event-driven simulation for the
analysis of the NAS supporting common
communications protocols. For the distributed
simulation, ACES uses the High-Level Architecture
(HLA) standard developed by the US Department of
Defense (DOD) and the Run-Time Interface (RTI)
available from the Defense Modeling and Simulation
Office (DMSO). ACES provides key agent models for
the NAS simulation, including aircraft, airport, Terminal
Radar Approach Control (TRACON), Air Route Traffic
Control Center (ARTCC), Airline Operations Center
(AOC), and weather. These different types of agents are
interacting with each other through message passing
during the simulation. ACES models the dynamic
behavior of different aircraft types, as well as the
procedures and communications agents such as aircraft
and air traffic control. In its current build, ACES
represents agents at a level that abstracts over
individual humans and human-system interfaces. Since
an important goal for us is to evaluate such interfaces,
we model the entire joint human-system, and use the
combined output to control an ACES agent.

To introduce human behavior into the simulation we
developed a simple Apex human agent model that
simulates the functions of individual air traffic
controller. One of challenges was to integrate the two
different simulation systems to run seamlessly together.
Apex is written in Lisp while ACES is a Java-based
simulation system using HLA protocols. To enable
communication between the two systems we developed
communications interfaces and protocols using
sockets. The Apex agent communicates with ACES
agents through a TCP/IP socket channel as shown
Figure 1. Conceptually, ACES is the direct link to all
simulation objects. Apex interprets the simulation world
and controls aircraft, as a human controller does. As a
result, the Apex-ACES Interface (AAI) translates

simulated displays and vehicle information into the
representation used by Apex and translates Apex’s
action representation into ACES function calls (e.g., to
control the vehicle and to manipulate sensors, radios,
and displays). To control the vehicle’s motion Apex
issues output commands to a corresponding ACES
agent. AAI converts the output commands to
OpenCybele message format, which can then be
interpreted by other agents in the simulation. Currently,
control of a vehicle occurs through setting the desired
state of the vehicle such as its speed, heading, and
altitude.

ACES (Airspace Concept Evaluation System)

Flight
Agent

TRACON

Agent

Other
Agents

Java-based Distributed Agent-Based Simulation

Communication Interface

Lisp-based APEX

Human Performance Model

APEX

Controller
Agent
Model Socket

Communication Communication
Interface

ATC

Agent Open Cybele
Message

Communication

ACES (Airspace Concept Evaluation System)

Flight
Agent
Flight
Agent

TRACON

Agent

TRACON

Agent

Other
Agents
Other

Agents

Java-based Distributed Agent-Based Simulation

Communication Interface

Lisp-based APEX

Human Performance Model

APEX

Controller
Agent
Model

APEX

Controller
Agent
Model Socket

Communication Communication
Interface

ATC

Agent

Communication
Interface

ATC

Agent Open Cybele
Message

Communication

Figure 1. Integration of Apex into ACES

Apex is used to model both the human agent and the
displays and controls the agent interacts with. In this
way, timing of agent actions and delays imposed by the
equipment and user interface can be simulated at high
fidelity. Communication with the ACES simulation
currently occurs at synchronized message passing
times in accordance with ACES protocols. This
arrangement is depicted in Figure 1. This scheme
provides a natural division between the human
performance model and the ACES-level agent. The
ACES incorporates objects that represent high-level
agents. The Apex agent need only transmit to its ACES
counterpart those messages of significance in the larger
context. Thus, while each keystroke of data entry into
flight computers must be simulated to predict the time,
the ACES-level agent need only be informed when the
keystrokes produce some change in the its state, such
as activating a mode, or changing a control setting.
More timely communications could be achieved using
asynchronous message passing. ACES does not
support asynchronous timing mechanisms. We are
working on establishing this capability.

3. A Simple Apex Model of Handoff

Our Apex agent performs the functions of an air traffic
controller responsible for traffic in a single enroute
sector during routine operations. In routine operations,

an enroute controller monitors the flights passing
through the sector, responds to various pilot requests,
and adjusts aircraft trajectories by instructing pilots to
alter their aircraft speed, flight level, and heading in
order to maintain safe and efficient flow of air traffic.
Our goal is not to build an agent that correctly does air
traffic control. Rather, it is to assess the demands of
doing the work.

Previous work has attempted to provide a more or less
complete functional analysis of enroute control [10-12].
A high level functional analysis of a portion of current
enroute control is shown in Figure 2. Each sector is
managed by two controllers, the radar controller (R-
side) and the radar associate controller (D-side), whose
duties complement and overlap. The R-side controller is
the primary controller in contact with aircraft. The D-
side controller assists, sharing responsibility for
conflict detection and planning, as well as performing
routine housekeeping.

Handoff aircraft (a/c)
Receive handoff
Resolve conflicts
Resolve metering/spacing violations
Respond to Alarms
Provide weather avoidance maneuvering
Provide flight plan conformance
Communicate clearances
Accommodate requests
Communicate with descent sectors
Receive Status Updates
Housekeeping

Acquire SA for AC
Determine Response
Reject

Detect Acceptance
Issue Freq Change
Receive Feedback
Mark AC as Shipped

Accept

Initiate handoff transfer

Detect Violation
Detect Top of Descent
Detect Conflicts
Determine weather impact on a/c
Monitor radio

Monitor Situation

Radar Controller (R-side)

Perform conflict detection
Perform trial planning
Coordinate with other sectors
Assist with pilot clearance readback
Manage a/c list and flight data
Enter flight plan amendments

Radar Associate Controller (D-side)

Figure 2. High-Level Tasks of Enroute Controllers

As shown in Figure 2, the air traffic controller must
handle multiple tasks, one or more of which may be
active at any moment. The multitasking behavior of our
Agent model is constrained by policy, by data, and by
resources. Policy determines which tasks should be
given priority. This is governed by domain knowledge

in combination with the current context. Within the
Apex agent, tasks only become active when the
conditions (data) are present to activate them. Resource
constraints in the agent’s architecture determine which
task subelements can be done in parallel and which
must wait for free resources. Tasks that require the
same resources such as radio, trackball, or keyboard,
can temporarily prevent parallel execution. In this way
resources in our Apex controller agent capture
capabilities and constraints on human behavior, which
have consequences for overall performance.

Typically R-Side controllers initiate handoff when an
aircraft reaches a trigger location (e.g. 30nm from
boundary of next sector) and the receiving controller
accepts a handoff before an aircraft enters his sector.
Once a handoff is accepted, the transferring controller
issues a frequency change clearance before the aircraft
leaves his control sector. The details of this Transfer of
Communications (TOC) differ for voice or datalink, and
this difference is of interest in assessing the impact of
datalink. Then flight crew will tune new frequency and
make an initial contact to receiving controller in next
sector. Figure 3 shows the high-level tasks of
controllers for initiating and receiving handoffs.

Situation
Monitoring

Initiate
Handoff

Receive
Handoff

Receive
Response

Request HO
via Voice or

Enter Keystrokes

Respond to TC
via Voice or

Enter Keystrokes

Wait for Pilot’s
Initial

Contact

Wait for RC’s
Response

Accept
Handoff

Delay
Handoff

Reject
Handoff

No
Response

Issue Frequency
Change to Pilot

Accept
Handoff

Delay
Handoff

Reject
Handoff

Receive Pilot
Readback

Mark AC
Shipped

Receive Pilot
Callin Contact

Acknowledge to
Pilot

via Voice

TC request handoff via voice
or RC detect handoff from radar

AC approaches a particular point
(30nm from its sector boundary)

Task Completed

Situation
Monitoring

Initiate
Handoff
Initiate

Handoff
Receive
Handoff
Receive
Handoff

Receive
Response
Receive

Response

Request HO
via Voice or

Enter Keystrokes

Request HO
via Voice or

Enter Keystrokes

Respond to TC
via Voice or

Enter Keystrokes

Respond to TC
via Voice or

Enter Keystrokes

Wait for Pilot’s
Initial

Contact

Wait for Pilot’s
Initial

Contact

Wait for RC’s
Response

Wait for RC’s
Response

Accept
Handoff
Accept
Handoff

Delay
Handoff

Delay
Handoff

Reject
Handoff
Reject

Handoff
No

Response
No

Response

Issue Frequency
Change to Pilot

Issue Frequency
Change to Pilot

Accept
Handoff
Accept
Handoff

Delay
Handoff

Delay
Handoff

Reject
Handoff
Reject

Handoff

Receive Pilot
Readback

Receive Pilot
Readback

Mark AC
Shipped
Mark AC
Shipped

Receive Pilot
Callin Contact
Receive Pilot
Callin Contact

Acknowledge to
Pilot

via Voice

Acknowledge to
Pilot

via Voice

TC request handoff via voice
or RC detect handoff from radar

AC approaches a particular point
(30nm from its sector boundary)

Task CompletedTask Completed

Figure 3. Task Analysis for a Handoff Task

These task analyses are represented in GOMS as a
hierarchy of nested goals. This hierarchical structure is
expressed in Apex using its Procedure Description
Language (PDL). PDL steps are decomposed
hierarchically into procedures of simpler steps until
those steps bottom out in primitive actions that occupy

human resources. Figure 4 shows the top-level
procedures. The index clause contains the name of the
procedure and is used to locate the procedure in the
procedure library. The air traffic control procedure
consists of 5 steps, each of the procedures are executed
when their conditions are met, as specified in the
waitfor clause. In the case shown here, the 5 steps can
execute in parallel and are assigned a priority, where the
highest value has greater priority. Figures 5 & 6 show
how the high-level PDL procedures for the handoff task
that decompose successively until they bottom out into
the primitive procedures shown in Figure 6.

Figure 4. Top-Level Apex Procedures

Figure 5. High-Level Handoff Procedures

Figure 6. Primitive Procedures

4. Patterns of Controller Behavior

We have recently received data from an air traffic
control simulations provided by the Federal Aviation
Administration. Our initial analysis has focused on two
areas that bear on the extension of our template
approach. First we examine patterns of multitasking
behavior to determine how to structure the procedures
in the initial Apex model. Next we examine how the
operator’s focus of attention is distributed over the
aircraft in the sector. This will begin to tell us behavior
patterns in routine behavior, and how factors that
govern the selection of which task to work.

4.1 Concurrent Task Management

In Figure 4 we presented an initial high-level Apex
procedure consisting of several tasks. Our assumption
was that these tasks would be executed concurrently
with dynamic priorities set by policy and practice. The
data provide some insight into how controllers in this
simulation actually managed these multiple tasks.

Figure 7 plots the eye fixations and events associated
with one specific aircraft, USA639, as a function of time
in the simulation. Each of the data points represents a
fixation on the aircraft or its data tag at that point in
time, the vertical lines represent actions taken at
specific times. Eye fixations for two other aircraft,
BTA5093 and AAL904, are also plotted. The sequence
of actions associated with USA693 illustrates the
responsibilities and functions of the controller
consistent with our initial model taken from the task
analysis.

(procedure
 (index (do-domain))
 (step s (air traffic control))
 (step t (end-of-simulation) (waitfor (end-sim-signal)))

 (procedure
 (index (air traffic control))
 (step s1 (monitor radar) (priority 0))
 (step s2 (initiate handoff for ?ac-symbol)
 (waitfor (initiate-handoff ?ac-symbol))
 (period :recurrent :reftime enabled) (priority 4))
 (step s3 (receive handoff request for ?ac-symbol)
 (waitfor (receive-handoff ?ac-symbol))
 (period :recurrent :reftime enabled) (priority 2))
 (step s4 (detect metering violation for ?ac-symbol)
 (waitfor (detect -metering-violation ?ac-symbol))
 (period :recurrent :reftime enabled) (priority 6))
 (step s5 (detect conflicts and resolution for ?ac-1 and ?ac-
2)
 (waitfor (detect -conflict ?ac-1 and ?ac-2))
 (period :recurrent :reftime enabled) (priority 8)))

(procedure
 (index (detect initiating handoff ?aircraft))
 (step s1 (decide whether to initiate handoff ?aircraft))
 (step s2 (initiate handoff ?aircraft to next controller)
 (waitfor ?s1))
 (step s3 (monitor response from receiving controller)
 (waitfor ?s2))
 (step s4 (issue frequency change to pilot) (waitfor ?s3))
 (step s5 (mark ac shipped)
 (waitfor ?s4 (pilot readback)))
 (step done (terminate) (waitfor ?s5)))

(procedure
 (index (receive handoff request for ?ac-symbol))
 (step s1 (acquire sa for handoff ac))
 (step s2 (determine response) (waitfor ?s1))
 (step s3 (respond to initiating controller ?ac-symbol)
 (waitfor ?s2))
 (step s4 (wait for initial contact from pilot)
 (waitfor ?s3))
 (step done (terminate) (waitfor ?s4)))

(procedure
 (index (initiate handoff ?ac-symbol to receiving
controller))
 (step s1 (move-cursor-to ?ac-symbol))
 (step s2 (click trackball on ?ac-symbol) (waitfor ?s1))
 (step done (terminate) (waitfor ?s2)))

(procedure
 (index (move-cursor-to ?target))
 (profile right-hand)
 (step s1 (trackball-time ?target => ?time))
 (step s2 (start -activity right-hand moving-ic-trackball
 :object ?target :duration
?time => ?a)
 (waitfor ?s1))
 (step s3 (terminate) (waitfor (completed ?a))))

(procedure
 (index (click trackball on ?target))
 (profile right-hand)
 (step s1 (trackball-object => ?object))
 (step s2 (start -activity right-hand clicking-trackball
 :object ?object :ac-symbol ?target :duration 200 =>

Accept
Handoff

Initial Contact

ChangeAltitude

ChangeAltitude
ReadFlightPlan MovesTagToPostion

HandOff Drops FDB

CD&R Command

Clearances

Clearances Finish Handoff

Conflict

Accept
Handoff

Initial Contact

ChangeAltitude

ChangeAltitude
ReadFlightPlan MovesTagToPostion

HandOff Drops FDB

CD&R Command

Clearances

Clearances Finish Handoff

Conflict

Simulation Time (sec)

USA 639

BTA 5093

AAL 904

Figure 7. Eye Fixations and Actions for USA639

Because the time scale of 30 min is much greater than
the typical fixation duration of about 300-500 ms, it may
appear that at some points in time all three aircraft are
being fixated simultaneously, when in reality controllers
fixate aircraft serially. Serial behavior of this sort can
still be considered multitasking. In some cases the
individual behavioral elements can be related to multiple
high-level tasks. For example, there is a conflict alert at
about 1100 sec indicating a predicted conflict between
USA6392 and BTA5093. The controller appears to be
aware of that in advance given the high number of
fixations on USA639 preceding the alert. Still, during
that interval there are several fixations on AAL904, an
aircraft not involved in the conflict, yet relatively few
fixations on the other conflict aircraft BTA5093 until
just prior to the alert. The fixations on AAL904 are likely
related to a different set of high-level tasks than those
associated with the conflict, and the controller shares
monitoring resources with these ongoing tasks. The
identification of multitasking cannot be made entirely
based on concurrent execution but must consider the
span of events or time represented in the working
memory of the controller.

Some idea of the multitasking load can be seen in Figure
8, which plots the dwell times for each of a set of aircraft
over a 5 min interval. Dwell times were computed by
summing individual fixation durations on each aircraft
over a 1 min span. If we assume that a fixation
represents attentional resources being devoted to an
aircraft, then over intervals of this duration operators
attend to 8-15 aircraft.

0

10

20

30

40

50

60

1 2 3 4 5

Simulation time (14-18 min)

Fi
xa

ti
on

 d
ur

at
io

n
in

 s
ec

AAL904 AMT929 AWE825 BTA5093 BTA9303 COA186 EGF5141 EGF7231 JBU105
MES1662 MES1813 MsgOut NWA265 NWA574 Tma USA639 USA884

Figure 8. Dwell Times on Indi vidual Aircraft

Is it possible to identify episodes of true concurrency?
It would be expected that when controllers were
required to wait that they would attend to multiple
aircraft and perhaps service other tasks. Unfortunately,
the data do not contain the events needed to obtain
such estimates. However, there are several instances
where controllers conduct monitoring scans while
giving vocal clearances. This is shown in Figure 9. Here
the controller stars the utterance and while speaking
fixates several aircraft. We see clear evidence that
monitoring is conducted in parallel with other
behaviors, probably as a routine background activity.

“ JetBlue 1-0-5 descend and maintain flight level 2-7-0”

Communications

Eye Fixations
AWE825

AAL904

JBU105

AAL904

Figure 9. Concurrent Vocalization and Fixation

Examples such as the one above show that when
resource and logical constraints allow, true concurrent
performance will be observed. It also points out the
need for a well-specified resource architecture at the
level of elementary mental operations. Without a
detailed consideration of the cognitive, perceptual, and
motor level of performance such concurrency could not
be accounted for.

4.2 The Focus of Attention

In addition to data on the sharing of attention, Figure 8
also shows how the focus of attention on any
individual aircraft shifts as a function of time. For
example, in the first minute two aircraft, AAL904 and
AMT929, have long dwell times, which decrease over
the five minute interval. We are currently working to
relate these changes to specific operational situations
or actions to determine patterns that exist that would
inform us how to structure our domain-specific
templates.

Another way to track the focus of attention is to see
how concentrated or dispersed it is at any point in time.
Figure 10 attempts to depict this by plotting three
quantities as a function of time: the total number of
aircraft, the number of different aircraft attended
(fixated), and the total time spent looking at aircraft.

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Simulation time in minutes

N
um

be
r o

f A
/C

0

10000

20000

30000

40000

50000

60000

Fi
xa

ti
on

 t
im

e
in

 m
se

c

A/C in sector A/C fixated Dwell Time
Figure 10. Fixation Patterns over Time

5. Summary

We have described some preliminary steps in
generalizing a template-based approach to modeling to
complex domains. The model developed largely from
task analyses is now being modified in response to
patterns of data observed in a simulation. The data
contain important observations of how controllers
share tasks and how their focus of attention is directed
by contextual information. Many of these features
needed to handle these examples of multitasking were
already incorporated into Apex. The simulations
provide us with the content needed to determine how to
use the existing functionality. At present the only
outstanding issue is how to dynamically adjust
priorities. We are currently running simulations to
compare the performance of our model to observed
results and refining the model.

6. Acknowledgements

This work was supported by the Virtual Airspace
Modeling and Simulation project of the NASA Airspace
Systems program. The authors wish to thank Lisa
Bjarke, Karlin Roth, and Larry Meyn for programmatic
assistance, and Parimal Kopardekar, Ben Willems and
Ken Leiden for making available task analysis and task
modeling data.

6. References

[1] Freed, M. "Simulating Human Performance in
Complex, Dynamic Environments," Doctoral
dissertation, Northwestern University, 1998.

[2] John, B. E., Vera, A. H., Matessa, M., Freed, M.,
and Remington, R. "Automating CPM-GOMS," in
Proceedings of CHI'02: Conference on Human Factors
in Computing Systems. New York, ACM Press, pp. 147-
154, 2002.

[3] Card, S. K., Moran, T.P. & Newell, A. The
Psychology of Human-Computer Interaction. Hillsdale,
NJ: Lawrence Erlbaum Associates 1983.

[4] John, B. E. & John, B. E. & Kieras, D. E. “Using
GOMS for user interface design and evaluation: Which
technique?,” ACM Transactions on Computer-Human
Interaction, New York: ACM Press, 3(4), pp. 287-319,
1996.

[5] Kieras, D. E. “Guide to GOMS model usability
evaluations using NGOMSL,” The Handbook of
Human-Computer Interaction, M. Helander and
T.Landauer (Eds.), 2nd ed. North-Holland Amsterdam.

[6] Kitajima, M. & Polson, P. G. “A comprehension-
based mo del of correct performance and errors in
skilled, display-based, human-computer interaction,”
International Journal of Human-Computer Studies,
43(1), pp.65-99, 1995.

[7] Pirolli, P. and Card, S. K. “Information foraging,”
Psychological Review, 106, pp.643-675,1999.

[8] Gray, W. D., John, B. E. & Atwood, M. E.
“Project Ernestine: Validating a GOMS Analysis for
Predicting and Explaining Real-World Task
Performance,” Human-Computer Interaction, 8(3),
pp.237-309, 1993.

[9] Matessa, M.; A. Vera; B. E. John; R. Remington;
M. Freed. “Reusable Templates in Human Performance

Modeling,” In Proceedings of the Twenty-fourth
Annual Conference of the Cognitive Science Society,
2002.

[10] Seamster, T. L.; R. E. Redding; J. R. Cannon; J.
M. Ryder; J. A. Purcell. “Cognitive task analysis of
expertise in air traffic control,” International Journal of
Aviation Psychology, Vol. 3, pp. 257-283, 1993.

[11] Leiden, K. “Human Performance Modeling of En
Route Controllers,” Micro Analysis & Design, Inc.,
Boulder, CO RTO-55 Final Report, Prepared for NASA
Ames Research Center, December 2000.

[12] Niessen, C.; S. Leuchter; K. Eyferth. “A
psychological model of air traffic control and its
implementation,” In Proceedings of the Second
European Conference on Cognitive Modeling,
Nottingham, U.K., pp.104-111, 1998.

Author Biographies

SEUNG MAN LEE

Seung Man Lee is a senior research engineer of
Cognition Laboratory at NASA Ames Research Center.
He received his Ph.D. in Industrial and Systems
Engineering from Georgia Institute of Technology. His
research interest includes the modeling and simulation
of human behavior and cognition, and the development
of human agent models for large-scale agent-based
simulations.

MICHAEL MATESSA

Mike Matessa received his Ph.D. in Psychology from
Carnegie Mellon University. He has had a decade of
experience with the ACT-R architecture working with
John Anderson at Carnegie Mellon University. He
developed the Visual Interface, which was the first
attempt to have ACT-R process perceptual information
and perform motor actions. His current work if focused
on the application of computational models of cognitive
processing to aviation applications.

UJWALA RAVINDER

Ujwala Ravinder received her M.S. degree in Computer
Science from University of Minnesota, Twin Cities. She
is working as a senior research associate in the
Cognition laboratory at the NASA Ames Research
Center. Her current work is focused on task analysis of
complex domains, developing and analyzing human
performance models in the aviation domain.

ROGER REMINGTON

Roger Remington received his Ph.D. in Human
Experimental Psychology from the University of Oregon
in 1978. He is currently the Group Lead for Cognition at
the NASA Ames Research Center. His research focuses
on human visual attention and multitasking. His work
has emphasized the application of computational
models of human performance to aerospace domains.

